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F =  2Zfcos  2n(hX+ lZ) 

x [cos 2nk Y+ i sin 2nk Y] 

2 Z f  sin 2n(hX + lZ) 

× [ -  sin 2nk Y+ i cos 2nk Y] = F,  

which may be summarized by saying that if  ~ is the 
geometrical structure factor for any k, and f¢ is the 
geometrical structure factor calculated as if the parity 
of  k were opposite to its true value, then for odd or 
even k 

F = Z f ~ ' ,  (qz,+qx)=SxffY, ( q x - q x ) = S x f , ~  ", 
,) (qu-qy = Z y f f Y ,  (qz+qz)=Xzf fY,  ( q z - q ' ~ ) = Z z f ~ .  
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The symmetry of a saturated hydrocarbon chain in extended trans configuration and indeterminate 
length is reviewed. A uniform row of such chains is defined so that the chain axes are parallel, coplanar 
and equidistant, and that the planes of the carbon atom zigzags of all the chains are parallel. The 
symmetry within such a row is stated, and all the possible symmetry relations between such rows when 
they are parallel, adjacent and identical is investigated. Making reasonable assumptions concerning 
dimensions, packing efficiency and stability, four different relations are found when the chain axes of 
neighboring rows are parallel, and seven different relations are found when the axes are not parallel. 
All the possible chain-packing subcells that could be made up of such rows are constructed, subject 
to the limitations that the subcells extend over no more than two rows, and that the same symmetry 
relation exists between all adjacent rows. Ten different subcells are thus generated when all the chain 
axes are parallel, and thirty-one when they are not. It is found that the eight reported chain-packing 
modes are all included among these. It is shown that the symmetry of three of the six reported subcells 
in which the chain axes are all parallel is higher than was previously assumed. An attempt to relate the 
frequency of occurrence of the various subcells to the van der Waals energy as calculated by the Salem 
method failed. 

Introduction 

Eight hydrocarbon-chain  packing arrangements  have 
been described f rom single-crystal structure determin- 
ations, six of which have all the chain axes parallel 
and the remaining two have the chain axes of alternate 
layers crossed. Another  packing arrangement,  the hex- 
agonal, has been postulated from powder data but  its 
structure is unknown.  Still another,  the ' ideal ' ,  has had 
its structure described in detail (Kitaigorodskii,  1961) 
but  it has never been observed. 

The purpose of this communica t ion  is to relate the 
described modes by generating them from symmetry 

* Present address: Unilever Research Laboratories, Chem- 
ical Physics Division, Port Sunlight, Cheshire, England. 

operations between uniform rows of chains. This ap- 
proach not only leads to simple classification of  all the 
known packing modes, but  it may indicate what  new 
ones might  be found. 

General considerations 

The lateral van der Waals  forces between hydrocarbon 
chains within a crystal structure are rarely so strong, 
compared with end-packing forces, as to make the ef- 
fect of  the end packing completely negligible. This ef- 
fect becomes evident when the total crystal symmetry 
is lower than the chain packing symmetry. Conversely, 
these forces are rarely so weak in comparison with the 
forces in other parts of  the structure that the chains 
are not able to assume a uniform, compact,  stable and 
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precise configuration. (Liquid crystalline structures 
probably retain much of the compactness and gross 
order of the chain packing but lose the stability of a 
particular precise configuration.) We shall here be con- 
cerned with the variety of precise configurations hyd- 
rocarbon chains take within crystal structures. Though 
the forces at the ends of the chains usually determine 
the configuration, we shall neglect these end effects in 
one respect: when two parallel chains fit together in a 
particular configuration, the shear that may be induced 
by end-packing forces may cause the convex parts 
along one chain not to fit exactly into the concave 
parts along the other chain by up to several tenths of 
1/~. This effect we shall ignore, just as, when discussing 
chain packing in a crystal structure, one usually ig- 
nores the distortions in this packing which often oc- 
cur close to the chain ends. 

Since each chain-packing mode is described in terms 
of a subcell which represents the local interrelation- 
ships between hydrocarbon chains in a structure, and 
ignores chain ends and groups attached thereon, we 
shall here for convenience assume that the chains are 
infinitely long. The concern here is only with saturated 
chains, but this also includes the saturated portions of 
chains between double bonds, cyclopropane rings, and 
the like. In the crystal structures solved to date, satur- 
ated portions of chains have generally been found to 
be in the extended trans configuration, with occasion- 
ally some minor twisting to satisfy end-group packing 
requirements. In this discussion we shall assume strict 
trans configuration so that one plane goes through all 
the carbon atoms in a chain; this will be called the 
chain zigzag plane. 

symmetry vectors: one along the chain axes, which is 
traditionally called c, and one between the chains, 
which we shall call b. If, as previously discussed, we 
neglect the shear due to end effects when the crystal 
symmetry is lower than the chain packing symmetry, 
b and c would be orthogonal. Let us pick the origin 
of our vector system at a chain center of symmetry. 

When the chains are packed very closely within a 
row, the planes of the chain zigzags are nearly per- 
pendicular to the row planes and the H atoms of ad- 
jacent chains fit together in such a way that the zig- 
zags are opposed. Then the h translational symmetry 
vector traverses two interchain distances and there is 
centered symmetry in the row. When the planes of the 
chain zigzags are rotated away from being nearly per- 
pendicular to the row plane, the interchain H-atom 
packing changes character in that the zigzags of neigh- 
boring chains go the same way, and thus b extends 
just to adjacent chains. The tT and tM chain relations 
of Kitaigorodskii (1961) are respectively the special 
cases with closest approach of the two general chain 
relations within a row mentioned above. In the first, 
twofold rotation axes between them relate neighboring 
chains, and in the second, twofold screw axes relate 
them. The symmetry of a row retains the centers of 
symmetry, twofold screw axes and mirror planes of 
the individual chains, but unless the chain zigzags are 
exactly parallel or perpendicular to a row plane, the 
row loses the twofold rotation and glide symmetry of 
the individual chains. A row will have additional cen- 
ters of symmetry halfway between the chain axes at 
0 and ½c in the first relation, and at ¼ and ¼c in the 
second relation. 

The symmetry of a hydrocarbon chain 

The hydrocarbon chain itself has mirror symmetry 
about a plane perpendicular to the chain axis and going 
through each atom in a CH2 group. The chain axis is 
itself a twofold screw axis. Two kinds of twofold rot- 
ation axis exist perpendicular to the chain axis: one 
parallel to the plane of the chain zigzag going through 
a carbon atom, and one perpendicular to the chain 
zigzag going through the point halfway between two 
carbon atoms. This latter point is on the chain axis 
and is a center of symmetry. There is a translational 
symmetry vector along the chain axis between alternate 
CHz groups. One may consider adjacent CH2 groups 
as being related by a glide down the chain axis per- 
pendicular to the plane which includes the chain axis 
and is perpendicular to the plane of the chain zigzag. 

The symmetry of a uniform row of chains 

Let us define a uniform row of chains as a row of chains 
in which the chain axes are all parallel and equidistant 
within one plane which we shall call the row plane, 
and in which the planes of the chain zigzags are all 
parallel. This row plane will include two translational 

Symmetry relations between chain rows 

We shall generate the various chain-packing modes by 
the parallel stacking of identical uniform rows. Adja- 
cent rows may have the same direction of their chain 
axes, or their chain axes may be rotated with respect 
to one another about the normal to the row planes. 
We shall now survey all the symmetry relations that 
can relate two adjacent uniform rows, and subsequent- 
ly use these row relations to build up unit cells which 
would be the subcells which describe the chain pack- 
ing in hydrocarbon-chain compounds. 

When we consider the possible symmetry operations 
that can relate uniform rows, a mirror plane is im- 
mediately ruled out since the convex parts of one row 
will butt against the mirror-related parts of the next 
row rather than fit into the concavities. 

Because of the inherent symmetry of hydrocarbon 
chains, a center of symmetry between the rows in the 
plane through h perpendicular to c is equivalent to a 
translation symmetry vector a passing through that 
point. (Any center of symmetry between the rows leads 
to parallelism of the chain axes of the neighboring 
rows.) If this center is at ½c away from the above plane 
we have the same result. If this center is at ¼ or ¼c, this 
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is equivalent to a twofold rotation axis parallel to c 
going through the center. Any other between-row pos- 
ition of a center is ruled out by the same packing 
argument that required b and c to be orthogonal, 
which here requires a to be perpendicular to c. 

A twofold rotation axis between the rows parallel 
to b is equivalent to a mirror if it is at ¼ or ¼c, or 
to a c-glide perpendicular to a if it is at 0 or ½c. A 
twofold screw axis between the rows parallel to b is 
equivalent to an a-glide perpendicular to b if the axis 
is at 0 or ½c or to a b-glide perpendicular to a if it is 
at ¼ or ¼c. A twofold screw axis between the rows par- 
allel to c is equivalent to a translation symmetry vector 
passing orthogonally through that axis. Twofold 
rotation or screw axes not parallel or perpendicular 
to c are possible, but we shall consider these later. The 
only remaining symmetry axes parallel to the uniform 
rows that can relate them are 4 and 74, where the planes 
of the chain zigzags are at 45 ° to the planes of the 
rows and the rotation axes go through the latter planes 
parallel to c at ½b. The first of these can be ruled out 
because, clustered around the fourfold axis, all the 
convex parts butt against one another. The second is 
more likely but its probability of occurrence is still low 
since each chain is in van der Waals contact with only 
four others; such a configuration has not been observed 
and we consider it mechanically unstable in the crys- 
talline state. 

Let us now consider the remaining possible symme- 
try operations, restricting our attention for the moment 
to the cases where the b and c symmetry axes are coin- 
cident with these axes as defined within each row. An 
a-glide perpendicular to b, a b-glide perpendicular to a 
and a c-glide perpendicular to a are all possible. The last- 
mentioned glide is, however, considered improbable 
because of the criterion that each chain should be in 
van der Waals contact with more than four neighbors. 
An n-glide perpendicular to a or b is equivalent to a 
b- or a-glide respectively. An a- or n-glide perpendic- 
ular to c, B-face centering or body centering are all 
equivalent to twofold axes. C-face centering is equi- 
valent to translational symmetry. 

The only other possible symmetry relations are four- 
fold inversion or various screw axes parallel to a. All 
the previously described symmetry relations in which 
a is normal to the row planes imply twofold screw axes 
parallel to a, and no new relations are generated by 
considering this symmetry relation independently. If 
we insist that chains of equal total length shall end in 
parallel planes in the structure, as has always been 
found, then all threefold and sixfold screw axes paral- 
lel to a are eliminated from consideration. Of the vari- 
ous fourfold screw axes and a fourfold inversion axis, 
the latter and a 42 axis require the chain zigzag planes 
to be perpendicular to the row planes. This latter cir- 
cumstance introduces a glide perpendicular to a (when 
a fourfold axis is possible, as is discussed in the next 
section) relating atoms of the same chain on opposite 
sides of a row plane. This glide combined with either 

42 or 74 produces the other. Nevertheless there are dis- 
tinctly different row relations depending on whether 
the 42 or 74 axes intersect the chain axes, and this shall 
be our distinguishing criterion. All these fourfold re- 
lations involve crossed chains and will be discussed 
further in the next section. 

To summarize at this point: if we require that (1) 
the structures are made up of hydrocarbon chains in 
uniform rows, (2) there is some interpenetration of H 
atoms between rows, (3) each chain is in van der Waals 
contact with more than four others, (4) the symmetry 
axes in the rows are parallel and perpendicular to the 
chain axes, and (5) the chain axes of all rows are par- 
allel, a survey of all the symmetry operations that can 
relate such layers shows that all the probable ones re- 
duce to the following: 
1. Simple translation; 
2. A twofold rotation axis parallel to the chain axes; 
3. An a-glide perpendicular to b; and, 
4. A b-glide perpendicular to a. 
Let us designate these as t, 2, ab and ba row relations 
respectively. 

Further row relations with rotated axes 

If we allow the symmetry axes to be arbitrarily rot- 
ated about an axis perpendicular to the row plane with 
respect to the direction of the chain axes, some of the 
symmetry operation degeneracy due to the inherent 
symmetry of the chains is removed. We can have the 
rows related by twofold rotation or screw axes paral- 
lel to some direction in the row planes, simple n- 
glide's, and various face or body centerings. Rotation 
or screw axes and a- or n-glides, each perpendicular 
to the new axes b or c, all lead to crossed chains. Glides 
perpendicular to a, B- and C-face centering, and body 
centering all lead to parallel chain axes. These latter 
situations can be described by the original set of sym- 
metry axes and so will not be further considered. 

What  remain are the crossed-chain row relations in 
which the new b and e vectors represent the periodic- 
ity of net-point matching between rows. Since the or- 
thogonal original vector sets in each row (call them 
b0 and e0) are identical but rotated with respect to one 
another, the new vector set (which we will call b and e) 
needed to describe the combined symmetry will lie in 
directions bisecting the rotated angle for each original 
axis. Thus b and e will also be orthogonal. Every net 
point from the new set must correspond to a net point 
from each of the original sets, but the converse of this 
statement is generally not true. 

For  a reasonably high degree of net-point matching 
between rows, we may expect that adjacent chains go 
through adjacent points of the new net. Thus the [01 1] 
and [017] directions of the new net would be parallel 
to the chain axes, and these net diagonals would have 
the length of a hydrocarbon chain with an even num- 
ber of CH2 groups (of length n.co where n is an integer). 
Let us define a vector d parallel to b relating adjacent 

A C 19  - 7 *  
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chains in one row. Then d=b0  if b0 relates adjacent 
chains, and d=½b0 if b0 relates alternate chains. The 
diagram of Fig. 1 represents the relationship between 
the original and the new axes. 

The angle between b and the chain axes will be cal- 
led ~,, and the quanti ty m is integral or half-integral 
depending on whether d=b0  or d=½b0 respectively. It 
follows directly from the tr igonometry of Fig. 1 that:  

m(n - m )  =d2/c  2 

and tan ~ '=  1/[m/(n-m)]  

For the moment  we shall only consider the situ- 
ations in which m > n-m, since interchange of m and 
n-m is equivalent to interchange of b and e. 

Let us now consider what the possible values of m 
and n might be in the light of  the known dimensions 
of hydrocarbon chains: In known crystal structures, 
the range of  the alternate C - C  distances along a hyd- 
rocarbon chain (c0) is from 2.50 to 2.66 A. The range 
of distances between chain axes (d) in a uniform row 
is 4.0 to 5"0 A, depending on the angle the plane of  
the chain zigzags makes with the row plane. When this 
angle is close to 90 °, d=½b0 in the range of d from 
4.0 A up to about  4.2 A. Beyond this latter value of d, 
the H atom intermeshing between chains changes and 
d = b0. Thus, for m half-integral, 

2.25 < m(n - m )  < 2-82, 

and for m integral 

2.82 < m(n - m )  < 4.00. 

The upper limit in the last expression is rather un- 
realistic since, near the max imum in d, the chain zig- 
zag planes must  be near 45 ° from the row planes, and 
the surface presented to the next row is so puckered 
that the density of van der Waals  contacts between 
such rows when crossed will be minimal.  In addition, 
the density of such contacts within a row is minimal  
with this orientation. We consider a more realistic up- 
per l imit for m(n-m) to be 3.5. This restriction excludes 
two possibilities having a value of 4.0. 

Within  these limits, there are only four possibilities, 
and these are shown in Table 1, where o9 is the angle 
between chain axes of adjacent rows and equals 180 ° 
-2~u .  

Table 1. Angles o f  crossed-chain row relations 

n m m(n-  m) ~ o9 
3 1.5 2.25 45 ° 90 ° 
4 3 3.00 60 ° 60 ° 
5 4.5 2.25 71.6 ° 36.8 ° 
6 5.5 2"75 73"2 ° 33"6 ° 

The chain zigzag planes are nearly or exactly per- 
pendicular to the row planes in the first, third and 
fourth of these possibilities, since m is half-integral. 
The first possibility is the only one in which the four- 
fold relations about  a, mentioned in the last section, 
can occur. In the second possibility, the chain zigzag 

planes are nearly or exactly parallel to the row planes 
since m is integral. This particular chain orientation 
with respect to the rows is particularly favorable for 
this angle of crossing, since the array of H atoms on 
the surface of such a row is remarkably  close to being 
hexagonal, and the next row can fit on top of it with 
a rotation of any multiple of  60 ° with little loss of  pack- 
ing efficiency as compared to no rotation. For this rea- 
son, one can expect this kind of crossed-chain row re- 
lation to be most prevalent. 

When n is even, each row is A-centered and an n- 
glide is equivalent to an a-glide. Only one type of sym- 
metry relation between rows is possible since an a-glide 
perpendicular  to an axis, a twofold rotation and a two- 
fold screw parallel to that same axis, are all equivalent. 

When n is odd, each row is primitive. We can either 
have an a-glide perpendicular to one of the axes (which 
is equivalent to a twofold screw axis parallel to that 
axis) or we can have a twofold rotation axis relating 
the rows. Only if  o9 = 90 ° and if  the planes of the chain 
zigzags are exactly perpendicular  to the row planes, 
can n-glides occur. Then, an n-glide perpendicular  to 
a will always relate atoms on opposite sides of the same 
chain, and if  the rows are related by twofold axes, an 
n-glide perpendicular  to the third axis is automatical ly 
generated. 

The arbitrariness of  the choice in assignment of  b 
and e was previously destroyed when we considered 
only m > n-m, which in effect defined the e axis as the 
one parallel to the bisector of  the acute chain-crossing 
angle. Let us now lift this restriction and restore the 
arbitrariness so that we need not duplicate the sym- 
metry operations with respect to b and e. Thus we can 
always assume b as the axis perpendicular  to the two 
others, but we now must include angles (o9) between 
chain axes which are supplements of  the ones previ- 
ously given. 

To summarize for crossed-chain row relations, i f  we 
assume (1) uniform rows, (2) hydrocarbon chains of  

d / 

" ~ t ~ "  axes 

Fig. 1. Relationship between the symmetry axes within a chain 
row and the combined-symmetry axes of two rows with the 
chain axes crossed. 
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equal total length end in planes, (3) net-point match- 
ing between rows so that there is a net representing the 
combined symmetry whose points correspond to origi- 
nal net-points within each row, (4) adjacent chains in 
a row go through adjacent combined-symmetry net 
points, (5) the planes of the chain zigzags are nearly 
parallel or perpendicular to the row planes, and (6) 
the range of distances between chain axes within a row 
and the range of alternate C-C  distances along a chain 
are those found in known crystal structures, then only 
four crossing angles (and their supplements) are pos- 
sible: 90 ° , 60 ° , 36.8 ° , and 33.6 ° . If  we use only the first 
four assumptions, a survey of all the symmetry oper- 
ations relative to the combined symmetry vectors that 
can relate the rows shows that all the possible ones are 
implied by the following: (1) A-centering, (2) no cen- 
tering but a twofold screw axis parallel to b, (3) no 
centering but a twofold rotation axis parallel to b, and 
(4) any fourfold screw or inversion axis parallel to a. 
Let us designate these as A, 21, 2b, 41, 42, 43, and 74 row 
relations respectively. 

Chain-packing subcells 

So far, we have considered all the possible symmetry 
operations relating adjacent uniform rows of chains, 
subject to reasonable conditions for packing. If we in- 
tend to determine what total chain-packing symmetries 
(i.e. chain-packing subcell symmetries) might occur, we 
must consider the sequence of symmetry relationships 
from row to row. In principle, the sequence can be 
very complex. Nevertheless, each of the known chain- 

packing subcells extends over no more than two rows 
and involves only one kind of symmetry relation be- 
tween rows. These subcells can be fully described by 
specifying (1) whether the angle between the chain zig- 
zag planes and the row planes is 0 °, 90 ° or neither, (2) 
the type of symmetry operation relating the rows, (3) 
the angle between chain axes of neighboring rows, and 
(4) the relative disposition of symmetry axes on each 
side of a given row when the chain zigzag planes are 
parallel or perpendicular to the row planes. When the 
fourth specification is needed, the positions of the sym- 
metry axes on both sides of a row can be related to 
each other either by the symmetry of the rows or by 
the symmetry that would have been followed without 
the special chain zigzag orientation. If the axis posi- 
tions follow the row symmetry, orthorhombic subcells 
are formed; if not, monoclinic subcells result. In the 
more general cases, t and 2 row relations lead to mono- 
clinic subcells with c as the unique axis; A, 21 and 
2~ row relations lead to monoclinic subcells with b as 
the unique axis; ab and ba row relations lead to or- 
thorhombic subcells; and fourfold screw and inversion 
row relations lead to tetragonal subcells with a as the 
unique axis. 

Let us now define a subcell notation to represent all 
of the structures discussed above. Monoclinic, ortho- 
rhombic and tetragonal subcells will be denoted by M, 
O and T respectively. A following superscript " or _L 
will denote the special cases of the planes of the chain 
zigzags parallel or perpendicular respectively to the 
row planes. A following subscript will denote the be- 
tween-rows symmetry relation: 1 for t, z for 2, a for ab, 

Subcell 
symbol 

M1 

M2 

O, 

Ob 

M1 II 

M 2  II 
M2-1- 

01 II 
02 II 

02± 

Table 2. Parallel-chain subcells 

SubceU symmetry 
(e along chain axes, 

b in row plane) 
^ 

P21/rn No. 11 

B2/ra No. 12 

Pnam No. 62 

Pbnm No. 62 

P21/m No. 11 

B2/m No. 12 
A2/m No. 12 

Pnm21 No. 31 
Pma2 No. 28 

A2122 No. 20 

Previously used symbol and reported symmetry; 
references and comments 

Never observed - M (Kitaigorodskii, 
1961) - called 'ideal'. 
Tn (PI) (Abrahamsson, 1959e) 

(Hayashida, 1962) 
(Mtiller & Lonsdale, 1948) 
(von Sydow, 1956) 
(Vand & Bell, 1951) 

T (Kitaigorodskii, 1961) 
0~_ (Pnam) (Abrahamsson, 1959e) 

(Bunn, 1939) 
(Shearer & Vand, 1956) 
(von Sydow, 1956) 
(Vainshtein & Pinsker, 1950) 

R (Kitaigorodskii, 1961) 
0±" (Pbnm) (Abrahamsson, 1959c) 

(Abrahamsson, 1959e) 
Mll (P21/m) (Abrahamsson & Westerdahl, 

1963), special case of MI 
Never observed - special case of M2 
Never observed - special case of ME with 
change of row designation 
Never observed. 
On" (P2212) (Abrahamsson & 

Ryderstedt-Nahringbauer, 1962) 
Oit (P21212) (Abrahamsson, 1959e) 

(von Sydow, 1958) 
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b for ba, A for A, 21 for 21, 2b for 2~, 42 for 42 and 
for 74. We shall only consider subcells on the level of  
complexity of those that have been reported, and since 
this excludes subcells involving more than two rows, 
we shall henceforth ignore 41 and 43 row relations. For 
the crossed-chain modes, we shall use a preceding nu- 
merical subscript which is the chain-crossing angle (09) 
that  is bisected by the c vector. 

Parallel chain subcells 

ject to fairly random distortions. The monoclinic sub- 
cell representation of this chain-packing mode does 
not (contrary to the cases discussed above where the 
previously reported symmetry was too low) add new 
information concerning expected systematic diffraction 
absences. Nevertheless, this representation may lead to 
easier interpretation of data, and so the monoclinic  
representation of Vand's  subcell is described in Table 
4. The relationship between the two representations is 
shown in Fig. 2, in which the two subcells are each seen 

Displayed in Table 2 are all the resulting parallel chain 
subcells on the level of  complexity of the reported ones. 
In several cases (O~ and O~) the space groups reported 
by previous authors were deficient in including the total 
symmetry of the structures they described. 

In the case of ME, which has previously been report- 
ed as triclinic, the shear distortion, due to end forces 
when the overall crystal symmetry is lower than the 
chain packing symmetry, becomes particularly impor- 
tant. Reproduced in Table 3 are the relevant data for 
the triclinic subcell f rom Abrahamsson ' s  (1959e) review 
article for nine known structures having this subcell, 
plus the values of Az = as cos fls + bs cos ~8. The quan- 
tity Az is a measure of this shear distortion, since it 
is the distance in the cs direction between the plane 
perpendicular  to cs going through the origin and the 
end of  the [110] triclinic lattice vector. In the mono- 
clinic representation with no shear, this is the b vector 
and Az=O. As can be seen in Table 3 the values of 
Az range on both sides of zero, and if  we exclude the 
data on A' n-C15 fatty acid (in which Az is an order 
of  magnitude larger than in the other compounds  and 
thus may be suspect), zero is within a s tandard devi- 
ation of the mean. We consider this as an indication 
that the 'triclinic' subcell is ideally monoclinic but sub- 

- j 

----~t 

cmt~ 

bit 

° 

Fig.2. Comparison between triclinic and monoclinic represen- 
tations of the M2 subcell. 

Table 3. Data for  the 'triclinic' subcell 
(From Abrahamsson, 1959e) 

Long-chain 
compound 

Trilaurin 
(Vand & Bell, 1951) 
A" n-C15 
(yon Sydow, 1956) 
A n-Clz 
(von Sydow, 1956) 
17-Me-C18 
(Abrahamsson, 
16DL-Me-C18 
(Abrahamsson 
14DE-Me--C18 
(Abrahamsson 
9DE-Me-C18 
(Abrahamsson 
30L-Me-C18 
(Abrahamsson 
2DL-Me-C18 
(Abrahamsson 

1959d) 

1958) 

1959a) 

1956) 

1959e) 

1959b) 

Az 
~r(Az) 

as bs Az 
(A) (A) ~ # (A) 

4"287 5"40 74 ° 45' 108 ° 2' + 0"09 

4.25 5"82 66 ° 106 ° + 1.20 

4.42 5"41 74 ° 109 ° + 0-05 

4"28 5"29 78 ° 109 ° - 0"30 

4.49 5"40 73 ° 107 ° + 0"27 

4"47 5"16 72 ° 109 ° +0"14 

4.20 5"27 81 ° 103 ° -0"12 

4"22 5"18 75 ° 107 ° +0.11 

4"33 5"27 72 ° 109 ° + 0.22 

Including A' n-Cx5 Excluding A' n-C15 
+0.184 +0.058 

0.139 0.066 
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projected down the chain axes and projected perpen- 
dicular to the common face of both subcells. 

The row stacking for the various parallel-chain sub- 
cells is shown in Figs. 3, 4 and 5. One can see in Fig. 3 
that the 341, ME, Oa and O~ chain-packing modes are 
related to one another by multiples of approximately 
90 ° rotations of the planes of the chain zigzags of al- 
ternate rows with respect to the other rows. Similarly, 
in Fig.4, it is obvious that 180 ° rotation of alternate 
rows relates O~ and O~, and also M~ and Mg.  

r 

Fig. 3. Parallel chain axes, hydrocarbon chain packing modes: 
Chain zigzag planes at oblique angle to rows. 

Fig. 4. Parallel chain axes, hydrocarbon chain packing modes: 
Chain zigzag planes parallel to rows. 

o~ M~ 
Fig. 5. Parallel chain axes, hydrocarbon chain packing modes: 

Chain zigzag planes perpendicular to rows. 

Table 4. Monoclinic transformation of Vand's data on 
the 'triclinic' subcell 
(Vand & Bell, 1951) 

Subcell symmetry: B2/m 
Subcell dimensions: as = 8.156 A 

b~=5"121 
ca = 2.45 
Ys = 112 ° 7' 

Carbon atom coordinates 
in asymmetric unit: (0.2813, 0"1021, 0) 

Crossed-chain subcells 

The various crossed-chain subcells are shown in Ta- 
ble 5. For n > 3, each listed mode which distinguishes 
between b and c is in actuality two modes, one with 
co as listed in Table 1, and the other with co the sup- 
plement of the first. Thus 31 different subcells are tab- 
ulated here. When we wish to distinguish between these 
in our notation, we shall use a preceding subscript 
equal to the value of co. For the orthorhombic modes, 
where there is a choice of subcells, the second is a 
special case of the first such that additional twofold 
rotation axes parallel to the a axis go through the chain 
axes. Further criteria based on packing efficiency that 
could reduce this list have not been developed, prima- 
rily because of the lack of experimental data. 

Attractive van der Waals energy 
of reported parallel-chain modes 

Salem (1962) has derived an expression for calculating 
the van der Waals attractive energy of long parallel 
chains. It is easy to use since it depends only on dis- 
tances between chain axes. Correcting for small errors 
in Salem's calculations (such as his assuming that there 
are four crystallographically distinct chains in the Oa 
subcell rather than the correct number, two) and gen- 
eralizing for any parallel-chain mode, we have: 

X 1 2~z 
Watt. = - 6 2 0  [ (r~ e ~T ) + 3---yR-T] 

where r is the distance of some other chain axis from 
a given chain axis, R is a value of r large enough that 
the summation (the first term in the bracket) can be 
replaced by an integral (the value of which is the second 
term) for r > R, and A is the excluded cross-sectional 
area per chain. This calculation was programmed for 
an IBM 1620 computer, and it was found that, if we 
set R=2OA, 64 to 70 chains were included in the sum- 
mation and the integral term contributed less than 1% 
to the energy. 

The results are shown in Table 6. Salem implies that, 
though the repulsive contribution to the total energy 
is much more sensitive to the specific H-atom inter- 
actions in various chain-packing modes, it might not 
be very far wrong to assume that 'the attractive and 
repulsive energies [are] in a ratio of 5 to 1 at the equi- 
librium distance'. Thus the total van der Waals energy 
might tend to be proportional to the attractive com- 
ponent. 
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Table 5. Crossed-chain subcells 

Subcell symmetry 
n Subcell symbol 
3 T42 ! P42/nam No. 138 
3 T-~2. P42/nba No. 133 
3 M21 P21/a No. 14 
3 ME0 P2 No. 3 
4 MA, MA II A2/a No. 15 
4 OA" Am2a No. 40 
5 M21, M212. P21/a No. 14 
5 MEb, M262. P2 No. 3 
5 O212. Pn21a No. 33 
5 02~2. Pn2n No. 34 
6 )VIA, MA± A2/a No. 15 
6 Oa± A2aa No. 37 

90T42 -L or 90M21 
60MA II or 60MA 

Occurrence in reported structure: 

[special case of O2a± (Pnaa)] 
[special case of 020-1- (Pn2n)] 

or Amaa No. 66 

or Pnaa No. 56 
or Pnan No. 52 

(Turner & Lingafelter, 1955) 
(Lomer, 1952) 
(Sim, 1955) 
(Vand, Lomer & Lang, 1949) 

Table 6. Attractive van der Waals energy by the Salem 
method 

Watt, 
Subcell symbol Data source (kcal/mole/CH2) 

M2 (Abrahamsson, 1959e), - 2"09 
average 

Oa (Salem, 1962) - 2-02 
Oa (Abrahamsson, 1959e), - 1.94 

average 
O~ (Abrahamsson, 1959c) - 1.99 

(Abrahamsson, 1959e) 
M1 tl (Abrahamsson, 1963) -2.03 
02 II (Abrahamsson & - 1.14 

Ryderstedt-Nahringbauer, 
1962) 

0 2 2 .  (Abrahamsson, 1959e) - 0-94 
(von Sydow, 1958) 

man  a  umpt 0n  og thi  metho6 are 
somewhat  questionable, one should not take the num- 
bers in Table 6 very seriously. Nevertheless one can 
conclude that,  since the MI~ and Ob modes (which have 
each been found only once) have the same order of  
magnitude of energy as the Oa mode (which is the most  
common),  therefore, the frequency of  occurrence of  
the various modes cannot  be adequately explained on 
the basis of  van der Waals  energy alone. We are cur- 
rently investigating the possibility that  a factor of  prime 
importance in explaining this frequency distribution 
may  be the thermal energy, which may be related to 
the ability of  each mode to undergo oscillations of  the 
chains about  the chain axes with minimal axis displace- 

ment while maintaining van der Waals  contact  with 
their neighbors. 
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